Impact of Highland Topography Changes on Exposure to Malaria Vectors and Immunity in Western Kenya

نویسندگان

  • Christine Ludwin Wanjala
  • Eliningaya J. Kweka
چکیده

BACKGROUND It is almost an axiom that in the African highlands (above 1,500 m) transmission of Plasmodium falciparum is limited primarily by low ambient temperature and that small changes in temperature could result in temporary favorable conditions for unstable transmission within populations that have acquired little functional immunity. The pattern of malaria transmission in the highland plateau ecosystems is less distinct due to the flat topography and diffuse hydrology resulting from numerous streams. The non-homogeneous distribution of larval breeding habitats in east African highlands obviously affects Anopheles spatial distribution which, consequently, leads to heterogeneous human exposure to malaria. Another delicate parameter in the fragile transmission risk of malaria in the highlands is the rapid loss of primary forest due to subsistence agriculture. The implication of this change in land cover on malaria transmission is that deforestation can lead to changes in microclimate of both adult and larval habitats hence increase larvae survival, population density, and gametocytes development in adult mosquitoes. Deforestation has been documented to enhancing vectorial capacity of Anopheles gambiae by nearly 100% compared to forested areas. METHOD The study was conducted in five different ecosystems in the western Kenya highlands, two U-shaped valleys (Iguhu, Emutete), two V-shaped valleys (Marani, Fort Ternan), and one plateau (Shikondi) for 16 months among 6- to 15-year-old children. Exposure to malaria was tested using circumsporozoite protein (CSP) and merozoite surface protein immunochromatographic antibody tests. Malaria parasite was examined using different tools, which include microscopy based on blood smears, rapid diagnostic test based on HRP 2 proteins, and serology based on human immune response to parasite and vector antigens have been also examined in the highlands in comparison with different topographical systems of western Kenya. RESULTS The results suggested that changes in the topography had implication on transmission in highlands of western Kenya and appropriate diagnosis, treatment, and control tool needed to be considered accordingly. Both plateau and U-shaped valley found to have higher parasite density than V-shaped valley. People in V-valley were less immune than in plateau and U-valley residents. CONCLUSION Topography diversity in western Kenya highlands has a significant impact on exposure rates of human to malaria vectors and parasite. The residents of V-shaped valleys are at risk of having explosive malaria outbreaks during hyper-transmission periods due to low exposure to malaria parasite; hence, they have low immune response to malaria, while the U-shaped valleys have stable malaria transmission, therefore, the human population has developed immunity to malaria due to continuous exposure to malaria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of swamp cultivation on distribution of anopheline larval habitats in Western Kenya.

BACKGROUND & OBJECTIVES Malaria resurgence in highland regions of East Africa has been on increase. The spatio-temporal distribution of larval habitats of malaria vectors determines the distribution of adult vectors, hence, disease transmission. Vector's ecology is necessary for strategic vector control through effective plan for source reduction. Mapping of the larval habitats is necessary for...

متن کامل

The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya.

Since 1988 malaria epidemics have occurred in multiple sites in western Kenya highlands. Climatic variability has been associated with some of the recent epidemics. We examined influences of climatic factors on the distribution and abundance of three malaria vector species, Anopheles gambiae, Anopheles arabiensis, and Anopheles funestus in western Kenya and in the Great Rift Valley. Mosquito sa...

متن کامل

Field assessments in western Kenya link malaria vectors to environmentally disturbed habitats during the dry season

BACKGROUND Numerous malaria epidemics have occurred in western Kenya, with increasing frequency over the past 20 years. A variety of hypotheses on the etiology of these epidemics have been put forth, with different implications for surveillance and control. We investigated the ecological and socioeconomic factors promoting highland malaria vectors in the dry season after the 2002 epidemic. ME...

متن کامل

Meteorologic Influences on Plasmodium falciparum Malaria in the Highland Tea Estates of Kericho, Western Kenya

Recent epidemics of Plasmodium falciparum malaria have been observed in high-altitude areas of East Africa. Increased malaria incidence in these areas of unstable malaria transmission has been attributed to a variety of changes including global warming. To determine whether the reemergence of malaria in western Kenya could be attributed to changes in meteorologic conditions, we tested for trend...

متن کامل

Molecular epidemiology of drug-resistant malaria in western Kenya highlands

BACKGROUND Since the late 1980s a series of malaria epidemics has occurred in western Kenya highlands. Among the possible factors that may contribute to the highland malaria epidemics, parasite resistance to antimalarials has not been well investigated. METHODS Using parasites from highland and lowland areas of western Kenya, we examined key mutations associated with Plasmodium falciparum res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016